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Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

Álvaro Corral1,2,3,4 and Francesc Font-Clos5

1Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, E-08193 Barcelona, Spain
2Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain

3Barcelona Graduate School of Mathematics, Edifici C, Campus Bellaterra, E-08193 Barcelona, Spain
4Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria

5ISI Foundation, Via Chisola 5, 10126 Torino, Italy
(Received 4 May 2017; published 22 August 2017)

Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-
frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of
this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit
theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps’ law as a
by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease
with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016)] does not stand with rigorous statistical
analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents,
whose values are close to 2, in agreement with the classical Zipf’s law. Some misconceptions about scaling are
also clarified.
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I. INTRODUCTION

Many complex processes in biology, social science, econ-
omy, Internet science, and cognitive science are mimicked
by the occurrence of words in texts. Indeed, the statistics
of insects in plants [1], molecules in cells [2], inhabitants
in cities [3], followers of religions [4], telephone calls to
people [4], employees in companies [5], links to sites on
the World Wide Web [6], chords in musical pieces [7],
etc., share with word-frequency distributions the property of
being broadly distributed, or “heavy tailed.” And most of
these phenomena are described, at least asymptotically, by
power-law distributions with exponents close to 2; in such
cases one can talk about the fulfillment of Zipf’s law [8,9].

A fundamental problem is how these systems evolve,
in particular, how they grow to reach a state for which a
power law, or even Zipf’s law, holds [10–12]. In Ref. [13],
Bernhardsson, da Rocha, and Minnhagen challenge the “Zipf’s
view,” proposing that the distribution of word frequencies in a
text or collection of texts (by the same author) changes with
the text length as

DL(k) = A
e−k/(c0L)

kγ (L)
, (1)

where k is the absolute frequency (number of tokens) of the
different words (word types), L is the text length in number
of tokens, DL(k) is the probability mass function of k (i.e.,
the distribution of word frequencies), γ (L) is a power-law
exponent, c0 is a constant parameter (independent of L), and
A is a normalizing constant. Bernhardsson et al.’s equation
[Eq. (1)] should apply to individual texts or collections when
one considers parts of length L of the whole. The key
ingredient of that approach to model the change of DL(k)
with L is the explicit dependence of the exponent γ on the
text length L, decreasing with increasing L. Note also that
Eq. (1) implies that, for the largest k, the word-frequency
distribution decays exponentially (in contrast to the algebraic
decay proposed in Zipf’s law).

Alternatively, in Ref. [14], we (together with Boleda) argue
that the variability of the statistics of words in a text with its
length is more simply explained by a scaling law,

DL(k) = 1

LVL

g(k/L), (2)

where VL is the size of the vocabulary (number of different
words, i.e., word types) for a fraction of text of length L, and
g(z) is an undefined scaling function, the same for any value
of L (but not necessarily the same for different authors).

Note that the scaling-law paradigm, Ref. [14] and Eq. (2),
does not assume any particular, parametric shape of DL(k) [in
contrast to Ref. [13] and Eq. (1), which give a truncated gamma
distribution]; the scaling-law paradigm only states that, for a
fixed text, all the DL(k)’s have the same shape no matter the
value of L, but at different characteristic scales given by L. In
other words, the shape parameters of the distributions do not
change with L, whatever the form of this distribution is (we do
not enter here into such debate [9,15–17]), and it is only a scale
parameter that changes, proportionally to L. Both exponential
tails and power-law tails are allowed by the scaling function
g(z); what is “forbidden” are text-length-dependent exponents
γ (L). Moreover, the scaling paradigm represented by Eq. (2)
does not involve any free parameter, as there is no restriction
on the scaling function g, and L and VL are given directly by
the text. In fact, the scaling law is just a finite-size scaling law
[18–21] (which is not explicitly mentioned in Ref. [14]).

Subsequently, Yan and Minnhagen claimed that this scaling
law is “fundamentally impossible” [22], “cannot be con-
ceptually valid,” and “is not borne out by the data” [23].
These statements constitute good examples of the sometimes
counterintuitive nature of scaling laws. Let us summarize the
points of these authors to make it clear that their critique is not
relevant.

i. First, in their Fig. 1 they find that the scaling law does
not hold for k = 1.

ii. Second, in their Fig. 2 they show that the scaling law
does not work well for, let us say, k � 10.
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FIG. 1. Total number of words NL with a relative frequency
greater than or equal to k/L, for varying L = Ltot/n, with Ltot the
length of the complete text. We have taken the same books as in
Ref. [23], (a) Moby-Dick and (b) Harry Potter, exactly reproducing
Figs. 2(a) and 2(b) in Ref. [23] but also including some additional
values of n. Deviations from the scaling law are always in the regime
of very low frequencies, as expected due to discreteness effects (which
are due to the fact that word tokens are discrete).

iii. Third, it is argued that a “randomness view,” based in
the concepts of “random group formation,” “random book
transformation,” and Metabook, predicts the right form of
DL(k), which is that in Refs. [13,24], i.e., Eq. (1) above.

It is quite clear that the first and second criticisms of Yan
and Minnhagen [23] are not fundamental, as they simply imply
that the scaling law can only be valid beyond the low-frequency
limit, so the scaling law can be rewritten as

DL(k) = 1

LVL

g(k/L) for k > 10.

This is not surprising at all, as it is well known in statistical
physics that scaling laws are usually observed only asymptot-
ically (see Appendix A). It is remarkable then that, for texts,
scaling is attained just after the first decade in frequencies
(i.e., for words that appear more than about 10 times). It is
also remarkable that, despite the fact that Yan and Minnhagen
[23] stretch the scaling hypothesis up to very small fragments
of texts (215 525 tokens divided into 500 fragments, yielding
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FIG. 2. (a) Probability mass function DL(k) of the absolute
frequency k, for varying subsets of length L = Ltot/n of Harry Potter,
displaying a seeming change of shape. (b) The same curves, but
plotting DL(k)LVL versus k/L, as proposed in Ref. [14] and stated in
Eq. (2). All curves collapse into a single, length-independent scaling
function g(k/L), in agreement with Eq. (2). Note the excellent data
collapse: even the deviations for small k are negligible in this case.
This is at odds with Eq. (1): a length-dependent exponent in DL(k),
as proposed by Yan and Minnhagen, is not compatible with the data
collapse shown here.

about 400 tokens in each one, for the case of Moby-Dick), the
scaling law still is fulfilled reasonably well beyond the first
decade in k, as we detail below. Naturally, the appropriate way
to further test the validity of the scaling law is the opposite
way, analyzing larger and larger texts. The third point of those
authors [23] is also not justified, as the authors do not provide
any statistical evidence supporting the claim that Eq. (1) fits
the empirical data to an acceptable confidence level.

In this paper we revise the evidence for the finite-size
scaling law for word-frequency distributions, Ref. [14] and
Eq. (2), comparing this approach with the one in Ref. [13] and
Eq. (1). In Sec. II we summarize the main claims in Ref. [13]
and how they relate to the validity of the scaling law; in Sec. III
we compare the performance of different fits related to the two
approaches; in Sec. IV we use a direct method to test the
validity of the scaling hypothesis applied to word-frequency
distributions; and, finally, in Sec. V we compare our approach
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with other ways of assessing errors in scaling. Section VI
presents a novel theoretical calculation of the scaling of the
moments of the distribution using the generalized central-limit
theorem, connecting them with the scaling law (and yielding
a derivation of Heaps’ law as a by-product). The conclusions
are given in Sec. VII, and Appendixes A and B follow. As
the empirical evidence in favor of the scaling law used in
Ref. [14] was essentially “visual” (collapse of rescaled plots
in log-log) and the theoretical arguments were reduced to a
heuristic derivation, the present paper provides a substantial
improvement in support of the validity of a finite-size scaling
law in word-frequency distributions.

II. VALIDITY OF THE FINITE-SIZE SCALING LAW
FOR WORD-FREQUENCY DISTRIBUTIONS

Let us explain Yan and Minnhagen’s points [23] in more
detail. They base their analysis on the empirical value of the
number of types with a frequency equal to or greater than k,
defined as

NL(�k) = VLSL(k) = VL

∞∑
k′=k

DL(k′),

where SL(k) is the empirical complementary cumulative
distribution of the frequency and NL(�k) turns out to be
nothing but the empirical rank associated with frequency k.
In terms of SL(k) the scaling law, (2), transforms into [14]

SL(k) = 1

VL

G(k/L) for k > 10,

under a continuous approximation, with G(z) a new scaling
function directly related to g(z) [14]. So, for NL(�k) one has
that the scaling law, (2), can be written as

NL(�k) = VLSL(k) = G(k/L) for k > 10. (3)

Then, in their Figs. 1(a) and 1(b) Yan and Minnhagen [23]
compare this cumulative number evaluated for the complete
text, NLtot (�k), with the vocabulary size VL for variable L,
which verifies, by definition, VL = NL(�1) (note that Ltot is
the length of the complete text). The disagreement between
NLtot (�k) and NL(�1) for the same values of the ratio between
frequency and length (k/Ltot = 1/L) makes it clear that the
scaling law, for any L �= Ltot and under the form given by
Eq. (3), does not work for the corresponding k = 1 (the hapax
legomena; these are types that appear just once in a text
sample of length L). Nevertheless, this disagreement does not
invalidate the scaling law, (2), for k > 1.

Subsequently, in their Fig. 2, the same authors [23] plot
NL(�k) versus k/L for all k and different L and indeed find
deviations with respect to the scaling law, but let us note that
these deviations are restricted to k � 10. Obviously, the reason
for these deviations is just that the scaling law is expected to
hold only asymptotically, which in practice means that k > 10
or so (see Appendixes A and B).

To make our thesis totally clear, in Fig. 1 we present
NL(�k) for the same data as in Fig. 2 of Ref. [23] (i.e.,
Moby-Dick, by Herman Melville, and Harry Potter, books
1 to 7, by J. K. Rowling), but adding symbols (instead of only
lines, as in Ref. [23]). It is apparent that even in the extreme
case of 500 equal fragments of the full text, the scaling law

only fails for very low frequencies. We have verified that the
scaling law holds for many other texts [14], even for Finnegans
Wake, by James Joyce, which constitutes an extreme case of
experimental literary creation, yielding an unusual, somewhat
concave relation between NL(�k) and k (in log-log) [25]; in
any case, the scaling function g(z) is not affected by concavity
or convexity.

Additionally, in Fig. 2 we perform the data collapse
associated with the scaling law in terms of the probability mass
function DL(k) for Harry Potter, presented in Ref. [23] as a
counterexample to the scaling law. As shown, the collapse is
excellent: after proper rescaling [Fig. 2(b)], all curves collapse
into a single, length-independent function, even for very low
frequencies (lower than 10). So we can write, for this text,

DL(k) � 1

LVL

g(k/L) for all k.

Note that this is the original form in which the scaling law
for word-frequency distributions was presented [14], and not
the one in Eq. (3). In other words, deviations from the scaling
law play an even smaller role in the representation in terms of
DL(k), in comparison to the representation in terms of NL(�k).
Finding a functional form for g(z) [whose particular shape in
the case of Harry Potter is unveiled in our Fig. 2(b)] is a
delicate issue, and it is not our interest here (in Ref. [14],
when considering lemmatized texts, a double power law was
proposed for the sake of illustration); nevertheless, in the
next section we show that the empirical data, for each text
and different values of L, are compatible with a unique g(z)
characterized by a power-law tail, with an exponent close to 2.

III. PROPER FITTING OF THE POWER-LAW TAIL

Looking at our Fig. 2(a), where DL(k) is shown with no
rescaling, one could conclude, as did Yan and Minnhagen
[23], that for different text lengths one gets different shapes
for Dk(L). Indeed, a visual inspection of the plot seems to
show different slopes for different L values, corresponding
to different exponents γ (L). However, the data collapse after
rescaling in Fig. 2(b) demonstrates that all distributions have
the same shape, given by g(z), but at different scales, given
by L (remember that in log-log a rescaling is seen just as a
shift). And the deviations for k � 10 do not play any relevant
role. The apparent different slopes of the different curves in
Fig. 2(a) are a visual artifact caused by the convex (but close
to linear) log-log shape of the curves. In other words, the
larger L, the larger portion of g(z) one sees beyond the tail. As
the body of the distribution does not decay as rapidly as the
tail, the more of the body one sees, the smaller the apparent
exponent, which is a sort of average between the body and the
tail. This illustrates how a simple replotting under a rescaled
form can unveil a common pattern in distributions given at
different scales. And let us repeat that we are not interested
here in providing a parametric model for this convex shape;
for that, just see Ref. [9].

In order to support their point, Yan and Minnhagen [23]
fit power laws [Eq. (1) with c0 = ∞] to the word-frequency
distributions for different L’s, finding a drift from γ � 3 for
the smallest fragments of text to γ � 1.6 for the largest length
(Zipf’s law would correspond to γ = 2, strictly speaking). The
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TABLE I. Results of a goodness-of-fit test [27] of a discrete
power-law distribution DL(k) ∝ 1/kγ2 in the range k � kcut for Harry
Potter (for which Ltot = 1 108 955). Note the stability of the γ2

exponent for kcut ∝ L. Note also that for L = Ltot/500 the difference
between Yan and Minnhagen’s result (γ � 2.4) and our result here
with kcut = 2 (yielding γ � 2.16) is rather large. It has been pointed
out that inappropriate fitting methods can lead to biased results [4,26].

L γ2 kcut VL p value

Ltot 2.06 ± 0.09 1024 22276 0.677
Ltot/2 2.05 ± 0.09 513 16361 0.504
Ltot/5 2.09 ± 0.09 205 10658 0.862
Ltot/10 2.09 ± 0.09 103 7431 0.263
Ltot/20 2.18 ± 0.09 52 5186 0.819
Ltot/50 2.14 ± 0.08 20 3240 0.554
Ltot/100 2.17 ± 0.09 11 2079 0.708
Ltot/200 2.14 ± 0.08 5 1353 0.903
Ltot/500 2.16 ± 0.07 2 774 0.683

authors do not mention which fitting method they use, or the
fitting range, but we can demonstrate that power-law fits for the
whole range of k in Moby-Dick and Harry Potter are in general
rejected after rigorous goodness-of-fit tests, no matter whether
one fits continuous [26] or discrete power laws [9]. Taking
Harry Potter and applying the maximum-likelihood fitting plus
the Kolmogorov-Smirnov test detailed in Ref. [9], we only get
one case of a nonrejectable discrete power law defined in
the range k � 1, which corresponds to L = Ltot/500, with an
exponent γ = 2.11 ± 0.04 and p = 0.49. For all other lengths
of fragments, power laws defined for k � 1 are rejected at the
0.05 significance level.

On the contrary, if we fit a power-law tail, which is a power
law

DL(k) ∝ 1

kγ2
(4)

defined only for k � kcut, with kcut a cutoff value of k verifying
kcut > 1, we find nonrejectable power laws for all L with stable
exponents when kcut is large enough. For the case of Harry
Potter we find that for kcut � 0.0009L, the exponents γ2 turn
out to be stabilized with values very close to 2. So, g(z) has a
power-law tail, valid for z = k/L > 0.0009 and with a stable
exponent, at odds with Ref. [13]’s claims. Details are listed
in Table I. Figure 3 provides more examples of this behavior,
for different texts. Although these results are in agreement
with Zipf’s law [and in disagreement with the exponential
tail represented by Eq. (1)], we are not interested here in the
parametric form of the distribution and only report the stability
of the exponents with L as a signature of the existence of a
well-defined, L-independent scaling function g(z).

IV. TESTING OF THE SCALING HYPOTHESIS

A more direct and nonparametric way to test the existence
of scaling is to use the two-sample Kolmogorov-Smirnov test
[28], which compares two data sets under the null hypothesis
that both of them come from the same population and,
therefore, have the same underlying theoretical distribution
(which is unknown and remains unknown after the test). But
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FIG. 3. Exponents of the power-law tails as a function of the
text length, for seven texts in English, Spanish, and French. Fits are
performed as in Refs. [8,27], with kcut restricted to the last two decades
of the distribution, and accepted for the kcut that yields a p value
larger than 0.20 (calculated from 1000 Monte Carlo simulations).
Error bars correspond to one standard deviation. Types are defined at
the word-lemma-tag level; more details on text processing are given
in Ref. [8]. Note how for L > 3000 all exponents are below 2.2, and
they become quite stable in the range 6000 < L < 2 × 106.

in the case of scaling we are dealing not with the same
distribution, but with distributions which have the same shape
at different scales, i.e., distributions that are the same except
for a scale parameter; then, rescaling the distributions by their
scale parameter would lead to the same distributions (under
the null hypothesis that scaling holds). This procedure to test
the fulfillment of scaling has been used before for continuous
distributions [29,30].

The Kolmogorov-Smirnov test is probably the best ac-
cepted test for comparing continuous distributions, but word-
frequency data are discrete and, after rescaling, become
discretized over different sets (as the scaling factors L of the
two distributions can be very different, in general). So, our
first step, in order to avoid this problem, is to approximate
the discrete empirical distributions with continuous ones,
by adding to each frequency a random term; in this way
k → k + u (where u is a uniform random number between
−0.5 and 0.5). Although there are more sophisticated ways to
continuize the distributions, this one uses no information from
the data (except that the k’s are natural numbers). The second
step is to remove low frequencies (remember that scaling is a
large-scale property); in our case we remove values of k below
4. Next, the third step is to perform the rescaling

k → 〈k〉k
〈k2〉 ,

where the moments of k are the original empirical ones
(calculated for the discrete distribution). In a simple case (with
no power laws involved [29,30]) we would have rescaled just
by the mean 〈k〉; in this case the rescaling is a bit more involved
[31,32]. Note that this rescaling is totally equivalent to dividing
k by L, as shown below; nevertheless, our choice is more
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FIG. 4. P values of two-sample Kolmogorov-Smirnov tests for
word-frequency distributions rescaled as explained in the text. One of
the samples has text length L and the other L′, ranging from Ltot/50
to Ltot. One of the data sets shown corresponds to testing the first
fragment of length L with the same fragment of length L′; for the
other data set other fragments are chosen. The texts are the same
seven used in the previous figure. P values below 0.05 should lead to
the rejection of the scaling hypothesis with a 0.95 confidence level.

general and makes the rescaling applicable when the data do
not come from a text.

Once these three steps have been done, the two-sample
Kolmogorov-Smirnov test [28] is performed for all pairs of
samples given by different L’s, restricting the samples to a
common support, i.e., a common minimum value is taken as
the minimum value of the sample with the smallest L (which
has the largest minimum when the frequencies are rescaled).
Figure 4 shows the P value of this test for several texts and
different divisions of the texts, up to Ltot/50. The fact that the
P value appears as uniformly distributed between zero and
one is an indication that the scaling null hypothesis holds.

V. RELATIVE ERRORS OF THE SCALING LAW

Although the proper way to compare statistical distributions
is by means of statistical tests (as done in the previous section),
Yan and Minnhagen [23] instead use relative errors. They show
numbers for the relative error provided by the scaling law
and compare it with the error of the so-called random-group-
formation hypothesis. We explain why their comparison is not
appropriate First, for the scaling law, the empirical values of
NL(�k) are compared for a fixed ratio k/L with NLtot (�k)
and the errors are claimed to be large. Second, for the random
group formation the error is claimed to be much smaller, but in
this case the empirical data NL(�k) are compared with random
samples of the same length L, and not with a distribution of a
different length. It is obvious that this procedure has to yield
better results, and this constitutes a totally biased comparison.

But further, the errors provided by Yan and Minnhagen
[23] for the scaling law are inflated. Figure 5 shows the
relative difference or error between the true value NL(�k) and
the value approximated by the scaling law, NLtot (�k′), with

k/L

ε L
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10

1

10−1

10−2

10−3

10−4

FIG. 5. Relative error [NLtot (�k′) − NL(�k)]/NL(�k) of the
approximation to NL(�k) given by the scaling of the distribution
of the whole text NLtot (�k′), with k′ = kLtot/L, for Harry Potter.
Symbols correspond to the same values of n as in the previous figures.

k′ = Ltotk/L, which is

εL(k) = NLtot (�k′) − NL(�k)

NL(�k)
.

Note that, in general, replacing NL(�k) with NLtot (�k′) in
the denominator inflates the reported error, as, when there are
deviations, this number is systematically below NL(�k). The
results of our analysis (Fig. 5) show that the errors are not as
large as reported by Yan and Minnhagen [23]. Dividing Harry
Potter into up to 20 parts, the relative error provided by the
scaling law is almost always below 0.2, with the remarkable
exception of the case k = 1 for L = Ltot/20. Dividing the text
into smaller parts yields that the relative error is always below
0.3 for k > 10. But the error for small k is further reduced if
one uses for comparison the probability mass function DL(k)
instead of NL(�k). Remember that the original form of the
scaling law was reported for DL(k) and not for NL(�k). Our
Fig. 2(b) speaks for itself.

VI. SCALING OF MOMENTS FROM THE GENERALIZED
CENTRAL-LIMIT THEOREM, HEAPS’ LAW,
AND RELATION WITH THE SCALING LAW

We start this section dealing with a distribution DL(k) that
has a power-law tail with an exponent in the range 1 < γ1 < 2.
We consider the moments 〈k〉 and 〈k2〉 not as the moments of
the theoretical distribution (which would be equal to ∞) but
as the moments of a finite sample, whose size is just the size
of the vocabulary VL (by definition); that is,

〈k〉 = 1

VL

VL∑
i=1

ki and 〈k2〉 = 1

VL

VL∑
i=1

k2
i .

Due to the power-law behavior for large k, the general-
ized central-limit theorem [32,33] allows one to obtain the
scaling properties of these sums, assuming that the individual
frequencies are independent (or weakly dependent). Indeed,∑VL

i=1 ki does not scale linearly with VL but superlinearly, as∑VL

i=1 ki ∝ V
1/(γ1−1)
L . Moreover, if k has a power-law-tailed
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distribution with exponent γ1, so does k2, but with exponent γ ′
1

fulfilling γ ′
1 − 1 = (γ1 − 1)/2 (and in the range 1 < γ ′

1 < 2),
and then the generalized central-limit theorem also applies to
k2, to give

∑VL

i=1 k2
i ∝ V

2/(γ1−1)
L .

On the other hand, we can also use the exact result∑VL

i=1 ki = L (the definition of text length), from which we
obtain the classical Heaps’ law (also called Herdan’s law in
llinguistics) [14,34–37],

VL ∝ Lγ1−1, (5)

and therefore the moments fulfill

〈k〉 = L2−γ1 and 〈k2〉 = L3−γ1 (6)

(and, in general, 〈km〉 = Lm+1−γ1 ).
This result is compatible with a scaling law of the form

DL(k) = 1

Lγ1
g

(
k

L

)
. (7)

The case considered in the literature [32,38] assumes that
g(z) has an intermediate power-law decay with exponent
γ1 followed by a much faster decay (exponential or so) for
the largest k’s. The pure power-law tail considered above
is included in this framework when g(z) goes to 0 abruptly,
transforming the pure power law into a truncated power law.
Indeed, if the power law is truncated at kmax, using a continuous
approximation we get

〈km〉 =
∫ ∞

1
kmDL(k)dk �

∫ kmax

1
kmDL(k)dk

= Lm+1−γ1

∫ kmax/L

1/L

zmg(z)dz ∼ Lm+1−γ1 , (8)

because (for m > γ1 − 1) the integral tends to a constant when
L is large, taking into account that kmax is the maximum of
k from a sample of size VL and scales in the same way as∑

ki , i.e., as L. To see this one can just calculate, for any P ,
the percentiles kP of the distribution of the maximum of VL

frequencies, which verify [1 − SL(kP )]VL = P . Substituting a
power law for SL(k) (with exponent γ1 − 1) we get

kP ∝ 1

(1 − P 1/VL )1/(γ1−1)
�

(
VL

− ln P

)1/(γ1−1)

∝ L.

So, as all the percentiles of the maximum scale with L, the
distribution of the maximum scales with L too [we arrive at
the last result using that P 1/VL = e(ln P )/VL � 1 + (ln P )/VL,
valid for large VL, and also Heaps’ law (5)].

Therefore, a power-law tail for the distribution of fre-
quencies, with exponent γ1, is somehow equivalent to an
upper truncated power-law tail, with an effective cutoff kmax ∝
V

γ1−1
L ∝ L, which means that the features of the distribution at

the largest k have to scale with L. The scaling law, (2), follows
directly from Eq. (7) using Heaps’ law, (5), although note that
the version of the law given by Eq. (2) is nonparametric, in
the sense that the value of the exponent γ1 does not appear in
the law (which is good if the determination of the exponent
contains errors).

0.01L2/VL

Bragelonne

Artamène

La Regenta by Claŕın

El Quijote by Cervantes

Ulysses by Joyce

Moby-Dick by Melville

Clarissa by Richardson
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k
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107
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104
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FIG. 6. Linear relation between the second moment of the
distribution of word frequencies and the ratio of the squared text
length to the vocabulary size, for diverse texts used in the previous
figures [8]. A line with a linear coefficient 0.01 is shown for
comparison.

Moreover, as a by-product we obtain another form for the
scaling law,

DL(k) = 〈k〉3

〈k2〉2
g

(
k〈k〉
〈k2〉

)
, (9)

using the scaling, (6), of the moments with L and the scaling
law, with the scaling function g being the same as before,
except for proportionality factors. This scaling has been used
previously for self-organized critical phenomena, but under
different conditions [31]. Remember that here the moments
are not those of the theoretical distribution but the ones
corresponding to a sample of size VL. The equivalence of both
scaling laws, Eqs. (2) and (9), is empirically shown in Fig. 6
by means of the proportionality between 〈k2〉 and L2/VL.

However, real distributions of frequencies are not well
described at the highest frequencies by scaling functions g(z)
that decay either exponentially or abruptly (i.e., are sharply
truncated), as shown in Table I and Fig. 3. Instead, we expect
that the tail of g(z) [and therefore the tail of DL(k)] is
another power law, with an exponent γ2 > γ1. Remarkably,
this framework is also described by the scaling law, (7), and
the scaling of moments, (6), the key point being that one can
change the upper limit of the integral from infinite to kmax, and
kmax still scales linearly with L, so the derivation is the same
as in Eq. (8).

In order to support empirically the fulfillment of a scaling
law of the form given by Eq. (7) we follow the approach
presented in Ref. [39]. If such a scaling law holds, the distance
between the different rescaled distributions in log-scale

(ln ki − δ ln L, ln DL(ki) + γ1 ln L)

should be minimum when the right values of the exponents are
substituted. Note that we have introduced an extra exponent
δ, which we expect becomes equal to 1. We proceed by
minimizing such distances as a function of the exponents δ

and γ1, resulting in values of δ very close to 1 indeed and
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TABLE II. Exponents δ and γ1 obtained after the minimization
of the distance between the rescaled word-frequency distributions,
optimizing the data collapse, for seven texts. The text length L varies
from Ltot to Ltot/10. Different seeds are used in the algorithm in order
to avoid local minima.

Text and author Language δ γ1

Clarissa by S. Richardson English 0.96 1.50
Moby-Dick by H. Melville English 1.05 1.87
Ulysses by J. Joyce English 1.04 1.94
El Quijote by M. de Cervantes Spanish 0.96 1.64
La Regenta by L. A. Clarín Spanish 0.86 1.52
Artamène by Scudéry siblings French 1.04 1.63
Le Vicomte de Bragelonne
by A. Dumas (father) French 0.96 1.58

values of γ1 in the range 1.5 to 1.95, when different texts are
used (see Table II).

VII. DISCUSSION AND CONCLUSIONS

As an important remark, we want to clarify that we are not
against the so-called random-group-formation hypothesis [24],
as in some previous research we have made use of randomness
to explain real texts [40]. Our conclusion was that real texts
are not random, but the first appearance of a word is close to
random, so the word-frequency distribution (related to Zipf’s
law) and the type-token growth curve (related to Heaps’ law)
remain the same for real texts and for random versions of
them. The reason is that the word-frequency distribution is
independent of the word order, and the type-token growth
curve only depends on the first appearance of a word. Other
properties of real texts are different from those of random texts,
such as interappearance distances [40–42].

Summarizing, the empirical facts are clear: a finite-size
scaling law gives a very good approximation of the distribution
of word frequencies for different fragments of text of length
L. The shape of Dk(L) is the same for all L, and it is only a
scaling factor proportional to L that makes the difference for
different L’s. It is the parametric proposal in Ref. [13] which
is not well supported by solid statistical testing. In any case,
if the theory held by Yan and Minnhagen [23] is valid, then it
must contain the scaling law in some limit. If not, the theory
is irrelevant for real texts.

In conclusion, we show how the sort of scaling arguments
usual in statistical physics, in particular, finite-size scaling, (2),
can describe complex processes much better than parametric
formulas, (1). Finally, in order to avoid misunderstandings, let
us state that although curve fitting is a very honorable approach
in science (when done correctly [9,26,27]), a scaling approach
has nothing to do with that [23].
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APPENDIX A

We explain here the difference between a power law and
a scaling law, and how scaling laws in statistical physics
usually only hold asymptotically. Let us start with a scale
transformation. This is an operation that stretches and/or
contracts a function, i.e.,

T [f (x,y)] = cf (x/a,y/b),

where f (x,y) is a (in this example bivariate) real function, a,
b, and c are constant and positive scale factors, and T is the
scale transformation. If we ask the question which functions
are invariant under scale transformations (i.e., which functions
do not change when they are stretched and/or compressed), we
find that a solution is

f (x,y) = 1

xβ
g
( y

xα

)
, (A1)

with α = ln b/ ln a, β = − ln c/ ln a, and g an arbitrary func-
tion, called the scaling function (we also consider x > 0).
Moreover, if we look for a solution valid for any real value
of a > 0, the previous solution, (A1), turns out to be the only
solution [38]. One refers to Eq. (A1) as a scaling form or a
scaling law.

Note that a power law is a special case of a scaling law,
just taking the arbitrary scaling function g to be a constant C.
In fact, in one dimension [i.e., for univariate functions f (x)]
the only scaling laws (the only scale-invariant functions for
any value of the scale factor a) are the power laws [10,43], so
f (x) = C/xβ . Although the terms “scaling law” and “power
law” are sometimes taken as synonyms, it is clear that they
are only equivalent for univariate functions. For bivariate
(and multivariate) functions one needs to be more careful in
distinguishing both concepts (as we do here).

Let us stress that scaling is a fundamental pillar of 20th-
century statistical physics [44]. In our case, we propose that
a (bivariate) scaling law holds for DL(k), so we identify
k = y, L = x, and DL(k) = f (x,y) and assume Heaps’ law
for the usual scaling law to hold (more details in Ref. [14]).
Alternatively, we may identify NL(�k) not with DL(k) but
with f (x,y), with no necessity of using Heaps’ law. In any case
this does not necessarily imply that the scaling function g has
a power-law shape. We do not care here about the functional
form of g; this is just the shape shown in Fig. 2(b) (for the
particular book under consideration there).

We provide in Fig. 7 a practical example of how scaling
laws in statistical physics hold usually only for large x and y

(i.e., large L and k). We display the rescaled size distribution
DL(k) of a critical Galton-Watson branching process [45] with
its number of generations bounded by a finite L and with its
offspring distribution given by a binomial distribution with
two trials. This process is totally equivalent to percolation
in the Bethe lattice [46]. The figure shows the deviation
from the scaling law for k � 10, but nevertheless, it has
been proven analytically that finite-size scaling holds in this
system [46]. Ironically, in this case the scaling function is
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FIG. 7. Rescaled size distribution DL(k) as a function of the
rescaled size k for a critical Galton-Watson branching process with
a binomial offspring distribution (with a maximum of two offspring)
and with different values of the maximum number of generations L.
A finite-size scaling law, of the form DL(k) = g(k/L2)/L3, holds, but
only for k > 10, roughly. Curiously, when the offspring distribution
is geometric (for which the size distribution coincides with the
escape time of a random walker moving between an absorbing and
a reflecting boundary [21]), the deviation takes the opposite sign
(see Ref. [32]). But beyond the smallest values of k, the rescaled
distributions coincide and universality shows up [44].

well approximated by the function proposed by Bernhardsson
et al. [13] [our Eq. (1)], but with a constant exponent
γ = β/α = 3/2.

APPENDIX B

Let us see how discreteness effects alter scaling. Naturally,
the discrete nature of word-frequency distributions comes from
the fact that the fundamental unit is the count of word tokens.
If we assume that scaling holds for all k, even for k = 1 and
k = 2, the finite-size scaling law, under the form given by
Eq. (3), implies that

NL(�2) = NL/2(�1),

and we can relate this to the size of the vocabulary for each
text length, so

VL − ns
L(1) = VL/2,

where nL(k) counts the number of types with frequency
(exactly equal to) k, and the superscript s denotes that we
are under the scaling hypothesis.

On the other hand, for a random text, VL/2 can be calculated
from VL as

VL/2 = VL − nL/2(0) = VL −
∑
k�1

h0,knL(k),

where h0,k gives the probability of getting 0 tokens of a certain
type when a fragment of text of length L/2 is taken from a
text of length L in which the same type has frequency k (see
Eq. (5) in Ref. [14]). Comparing both equations for VL/2 we
get ns

L(1) = ∑
k�1 h0,knL(k). But using that h0,k < 1/2k (see

below) and nL(k) < nL(1) for k > 1 [from empirical evidence;
see Fig. 2(a), for instance], we arrive at

ns
L(1) = nL/2(0) =

∑
k�1

h0,knL(k) < nL(1)
∑
k�1

1

2k
= nL(1)

(extending the sum to infinite). Thus, the scaling hypothesis
yields, for a random text and for k = 1, fewer types than it
should. This can be seen by looking carefully at some of
the plots in Fig. 2 of Ref. [14], but not in Fig. 3 there or
in Fig. 2(b) here, as the deviations are rather small [just note
that the empirical DL(k) is proportional to nL(k)].

The fact that h0,k < 1/2k comes from the fact that h0,k is
given by the hypergeometric distribution (as we assume that
we take tokens from the larger text with no replacement), and
then

h0,k =
(

k

0

)(
L − k

L/2 − 0

)/(
L

L/2

)
(B1)

=
[

(L − k)!

(L − k − L/2)!

]/ [
L!

(L/2)!

]
(B2)

=
[

(L/2)!

(L/2 − k)!

]/[
L!

(L − k)!

]
(B3)

= (L/2)(L/2 − 1) . . . (L/2 − k + 1)

L(L − 1) . . . (L − k + 1)
(B4)

=
k−1∏
j=0

(
L/2 − j

L − j

)
, (B5)

where all factors are smaller than 1/2, except the one for j = 0.
This yields h0,k < 1/2k . In this way we show how discrete
effects break scaling for the lowest frequencies, but as shown
in the plots, this effect is very small.
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